APPROACHING BALLISTIC TRANSPORT IN SUSPENDED GRAPHENE PDF

Approaching ballistic transport in suspended graphene. Article (PDF Available) in Nature Nanotechnology 3(8) · September with. Here we show that the fluctuations are significantly reduced in suspended graphene samples and we report low-temperature mobility approaching cm2. Transport in Suspended Monolayer and Bilayer Graphene Under Strain: A New. Platform for Material .. Approaching ballistic transport in suspended graphene.

Author: Akinoshura Vicage
Country: Monaco
Language: English (Spanish)
Genre: Business
Published (Last): 15 July 2012
Pages: 415
PDF File Size: 16.55 Mb
ePub File Size: 18.28 Mb
ISBN: 685-9-42018-933-6
Downloads: 85189
Price: Free* [*Free Regsitration Required]
Uploader: Duzahn

At higher temperatures, above K, we observe the onset of thermally induced long-range scattering. We theoretically consider, comparing with the existing experimental literature, the electrical conductivity of gated monolayer graphene as a function of carrier density, temperature, and disorder in order to assess the prospects of accessing the Dirac point using transport studies in ballietic suspended graphene. Figure 9 Temperature-dependent conductivity of SG corresponding to the experimental data of a Du et al.

Such values cannot be attained in semiconductors or non-suspended graphene. Figure 3 Conductivity of SG corresponding to the experimental data of Bolotin et al. Figure 2 Temperature-dependent electron density n T [Eq. Moreover, unlike graphene samples supported by a substrate, the conductivity of suspended graphene at the Dirac point is strongly dependent on temperature and approaches ballistic values at liquid helium temperatures.

Density-dependent electrical conductivity in suspended graphene: Figure 5 Conductivity corresponding to the experimental data of Mayorov et al. B 87— Published 18 January Figure 4 Conductivity corresponding to the experimental data of Du et al.

  INDIAN CAPTIVE THE STORY OF MARY JEMISON PDF

Abstract We theoretically consider, comparing with the existing experimental literature, the electrical conductivity of gated monolayer graphene suspneded a function of carrier density, temperature, and disorder in order to assess the prospects of accessing the Dirac point using transport studies in high-quality suspended graphene.

Solid dashed lines indicate the results with without phonon trwnsport. Unlike two-dimensional electron layers in semiconductors, where the charge carriers become immobile at low densities, the carrier mobility in graphene can remain high, even when their density vanishes at the Dirac point.

Here n 0 indicates the density induced by the gate voltage and n T indicates the total density, i.

Approaching ballistic transport in suspended graphene.

The discovery of graphene raises the prospect of a new class of nanoelectronic devices based on the extraordinary physical properties of this one-atom-thick layer of carbon.

Das Sarma 1 and E. The same parameters used in Figs. Here we show that the fluctuations are significantly reduced in suspended graphene samples and we report low-temperature mobility approachingcm2 V-1 s-1 for carrier densities below 5 x cm The dashed line indicates the conductivity due to the Coulomb disorder and the short-range disorder.

Figure 6 Calculated conductivity as a function of density for different temperatures: In d the nonmonotonic behavior at high densities does not appear due to the strong short-range potential scattering, but in high-mobility samples b the nonmonotonic behavior shows up due to the much weaker neutral impurity scatterings. Series I Physics Physique Fizika.

  HETTICH DRAWER RUNNERS PDF

Weyl fermions are observed in a solid.

Xu Du – Google Scholar Citations

We show that the temperature dependence of graphene conductivity around the charge neutrality point provides information about how closely the system can approach the Dirac point, although competition between long-range and short-range disorder as well as between diffusive and ballistic transport may considerably syspended the picture.

Figure 10 Temperature-dependent conductivity of SG corresponding to the experimental data of ab Bolotin et al. We provide detailed numerical results for temperature- and density-dependent conductivity for suspended graphene. Approaching the Dirac point in transport S.

Sign up to receive balliatic email alerts from Physical Review B. Solid lines represent Eq. Das Sarma and E. However, when the graphene sample is supported on an insulating substrate, potential fluctuations induce charge puddles that obscure the Dirac point physics.

Solid dashed lines indicate Eq.

Posted in Sex